Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Phys Med Biol ; 69(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38330448

ABSTRACT

Dual panel PET systems, such as Breast-PET (B-PET) scanner, exhibit strong asymmetric and anisotropic spatially-variant deformations in the reconstructed images due to the limited-angle data and strong depth of interaction effects for the oblique LORs inherent in such systems. In our previous work, we studied time-of-flight (TOF) effects and image-based spatially-variant PSF resolution models within dual-panel PET reconstruction to reduce these deformations. The application of PSF based models led to better and more uniform quantification of small lesions across the field of view (FOV). However, the ability of such a model to correct for PSF deformation is limited to small objects. On the other hand, large object deformations caused by the limited-angle reconstruction cannot be corrected with the PSF modeling alone. In this work, we investigate the ability of deep-learning (DL) networks to recover such strong spatially-variant image deformations using first simulated PSF deformations in image space of a generic dual panel PET system and then using simulated and acquired phantom reconstructions from dual panel B-PET system developed in our lab at University of Pennsylvania. For the studies using real B-PET data, the network was trained on the simulated synthetic data sets providing ground truth for objects resembling experimentally acquired phantoms on which the network deformation corrections were then tested. The synthetic and acquired limited-angle B-PET data were reconstructed using DIRECT-RAMLA reconstructions, which were then used as the network inputs. Our results demonstrate that DL approaches can significantly eliminate deformations of limited angle systems and improve their quantitative performance.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Algorithms , Phantoms, Imaging
2.
Med Phys ; 51(1): 54-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37956261

ABSTRACT

BACKGROUND: Scatter correction (SC) is essential in PET for accurate quantitative imaging. The state-of-the-art SC method is single-scatter simulation (SSS). Although this method is usually robust and accurate, it can fail in some situations, for example when there is motion between the CT and PET scans in PET/CT. Therefore, it is of interest to consider other SC methods. PURPOSE: In this work, an energy-based scatter estimation (EBS) method is described in detail, tested in phantoms and patients, and compared to SSS. METHODS: This version of EBS was developed for list-mode data from Biograph Vision-600 PET/CT scanner. EBS is based on digitized 2D energy histograms in each bin of a coarsely sampled PET sinogram, either with or without time of flight (TOF). The histograms are modeled as a noisy realization of a linear combination of nine basis functions whose parameters were derived from a measurement of the 511-keV photopeak spectrum as well as Monte-Carlo simulations of the scattering process. EBS uses an iterative expectation maximization approach to determine the coefficients in the linear combination, and from this estimates the scatter. The investigation was restricted to 18 F-based PET data in which the acquired number of counts was similar to the levels seen in oncological whole-body PET/CT scans. To evaluate the performance, phantom scans were used that involved the NEMA NU2-2018 protocol, a slab phantom, an NU 2-1994 phantom, a cardiac phantom in an anthropomorphic chest phantom, and a uniformly-filled torso phantom with a bladder phantom slightly outside the axial field of view. Contrast recovery (CR) and other parameters were evaluated in images reconstructed with SSS and EBS. Furthermore, FDG PET scans of seven lung cancer patients were used in the evaluation. Standardized uptake values (SUV) based on SSS and EBS were compared in 27 lesions. RESULTS: EBS and SSS images were visually similar in all cases except the torso + bladder phantom, where the EBS was much closer to the expected uniform image. The NU2-2018 analysis indicated a 2% scatter residual in EBS images compared to 3% with SSS, and 10% higher background variability, which is a surrogate for image noise. The cardiac phantom scan showed that CR was 98.2% with EBS and 99.6% with SSS, and that the SSS sinogram had values greater than the net-true emission sinogram, indicating a slight overcorrection in the case of SSS. In the lesion SUV comparison in patient scans, EBS correlated strongly (R2  = 0.9973) with SSS, and SUV based on EBS were systematically 0.1 SUV lower. In the case of the torso + bladder phantom portion, the SSS image of the torso + bladder phantom was 299% times hotter than expected in one area, due to scatter estimation error, compared to 16% colder with EBS. CONCLUSIONS: In evaluating clinically relevant parameters such as SUV in focal lesions, EBS and SSS give almost the same results. In phantoms, some scatter figures of merit were slightly improved by use of EBS, though an image variability figure of merit was slightly degraded. In typical oncological whole-body PET/CT, EBS may be a suitable replacement for SSS, especially when SSS fails due to technical problems during the scan.


Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Humans , Scattering, Radiation , Positron-Emission Tomography/methods , Physical Phenomena , Computer Simulation , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
3.
PET Clin ; 19(1): 37-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949606

ABSTRACT

Dedicated breast PET scanners currently have a spatial resolution in the 1.5 to 2 mm range, and the ability to provide tomographic images and quantitative data. They are also commercially available from a few vendors. A review of past and recent advances in the development and performance of dedicated breast PET scanners is summarized.


Subject(s)
Breast Neoplasms , Breast , Humans , Female , Breast/diagnostic imaging , Positron-Emission Tomography , Breast Neoplasms/diagnostic imaging
4.
Tomography ; 9(4): 1303-1314, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37489471

ABSTRACT

Digital breast tomosynthesis (DBT) reconstructions introduce out-of-plane artifacts and false-tissue boundaries impacting the dense/adipose and breast outline (convex hull) segmentations. A virtual clinical trial method was proposed to segment both the breast tissues and the breast outline in DBT reconstructions. The DBT images of a representative population were simulated using three acquisition geometries: a left-right scan (conventional, I), a two-directional scan in the shape of a "T" (II), and an extra-wide range (XWR, III) left-right scan at a six-times higher dose than I. The nnU-Net was modified including two losses for segmentation: (1) tissues and (2) breast outline. The impact of loss (1) and the combination of loss (1) and (2) was evaluated using models trained with data simulating geometry I. The impact of the geometry was evaluated using the combined loss (1&2). The loss (1&2) improved the convex hull estimates, resolving 22.2% of the false classification of air voxels. Geometry II was superior to I and III, resolving 99.1% and 96.8% of the false classification of air voxels. Geometry III (Dice = (0.98, 0.94)) was superior to I (0.92, 0.78) and II (0.93, 0.74) for the tissue segmentation (adipose, dense, respectively). Thus, the loss (1&2) provided better segmentation, and geometries T and XWR improved the dense/adipose and breast outline segmentations relative to the conventional scan.


Subject(s)
Artifacts , Breast , Humans , Female , Breast/diagnostic imaging , Adipose Tissue
5.
Phys Med Biol ; 68(10)2023 05 11.
Article in English | MEDLINE | ID: mdl-37084744

ABSTRACT

Objective. Current commercial positron emission tomography (PET) scanners have excellent performance and diagnostic image quality primarily due to improvements in scanner sensitivity and time-of-flight (TOF) resolution. Recent years have seen the development of total-body PET scanners with longer axial field-of-view (AFOV) that increase sensitivity for single organ imaging, and also image more of the patient in a single bed position thereby enabling multi-organ dynamic imaging. While studies have shown significant capabilities of these systems, cost will be a major factor in their widespread adoption in the clinic. Here we evaluate alternative designs that achieve many advantages of long AFOV PET while utilizing cost-effective detector hardware.Approach. We utilize Monte Carlo simulations and clinically relevant lesion detectability metric to study the impact of scintillator type lutetium oxyorthosilicate or bismuth germanate (LSO or BGO), scintillator thickness (10-20 mm), and TOF resolution on resultant image quality in a 72 cm long scanner. Detector TOF resolution was varied based on current scanner performance, as well as expected future performance from detector designs that currently hold most promise for scaling into a scanner.Main results. Results indicate that BGO is competitive with LSO (both 20 mm thick) if we assume that it uses TOF (e.g. Cerenkov timing with 450 ps fwhm and Lorentzian distribution) and the LSO scanner has TOF resolution similar to the latest PMT-based scanners (∼500-650 ps). Alternatively, a system using 10 mm thick LSO with 150 ps TOF resolution can also provide similar performance. Both these alternative systems can provide cost savings (25%-33%) relative to a scanner using 20 mm LSO with ∼50% of effective sensitivity, but still 500%-700% higher than a conventional AFOV scanner.Significance. Our results have relevance to the development of long AFOV PET, where reduced cost of these alternative designs can provide wider accessibility for use in situations requiring imaging of multiple organs simultaneously.


Subject(s)
Positron-Emission Tomography , Humans , Cost-Benefit Analysis , Positron-Emission Tomography/methods , Phantoms, Imaging , Monte Carlo Method
6.
Eur J Nucl Med Mol Imaging ; 50(3): 652-660, 2023 02.
Article in English | MEDLINE | ID: mdl-36178535

ABSTRACT

PURPOSE: Total body positron emission tomography (TB-PET) has recently been introduced in nuclear medicine departments. There is a large interest in these systems, but for many centers, the high acquisition cost makes it very difficult to justify their current operational budget. Here, we propose medium-cost long axial FOV scanners as an alternative. METHODS: Several medium-cost long axial FOV designs are described with their advantages and drawbacks. We describe their potential for higher throughput, more cost-effective scanning, a larger group of indications, and novel research opportunities. The wider spread of TB-PET can also lead to the fast introduction of new tracers (at a low dose), new methodologies, and optimized workflows. CONCLUSIONS: A medium-cost TB-PET would be positioned between the current standard PET-CT and the full TB-PET systems in investment but recapitulate most advantages of full TB-PET. These systems could be more easily justified financially in a standard academic or large private nuclear medicine department and still have ample research options.


Subject(s)
Nuclear Medicine , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Nuclear Medicine/methods , Positron-Emission Tomography/methods
7.
Phys Med Biol ; 67(14)2022 07 13.
Article in English | MEDLINE | ID: mdl-35697017

ABSTRACT

Objective. Deep learning denoising networks are typically trained with images that are representative of the testing data. Due to the large variability of the noise levels in positron emission tomography (PET) images, it is challenging to develop a proper training set for general clinical use. Our work aims to develop a personalized denoising strategy for the low-count PET images at various noise levels.Approach.We first investigated the impact of the noise level in the training images on the model performance. Five 3D U-Net models were trained on five groups of images at different noise levels, and a one-size-fits-all model was trained on images covering a wider range of noise levels. We then developed a personalized weighting method by linearly blending the results from two models trained on 20%-count level images and 60%-count level images to balance the trade-off between noise reduction and spatial blurring. By adjusting the weighting factor, denoising can be conducted in a personalized and task-dependent way.Main results.The evaluation results of the six models showed that models trained on noisier images had better performance in denoising but introduced more spatial blurriness, and the one-size-fits-all model did not generalize well when deployed for testing images with a wide range of noise levels. The personalized denoising results showed that noisier images require higher weights on noise reduction to maximize the structural similarity and mean squared error. And model trained on 20%-count level images can produce the best liver lesion detectability.Significance.Our study demonstrated that in deep learning-based low dose PET denoising, noise levels in the training input images have a substantial impact on the model performance. The proposed personalized denoising strategy utilized two training sets to overcome the drawbacks introduced by each individual network and provided a series of denoised results for clinical reading.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Signal-To-Noise Ratio
8.
Phys Med Biol ; 67(9)2022 04 21.
Article in English | MEDLINE | ID: mdl-35358957

ABSTRACT

Objective.Scattered events add bias in the reconstructed positron emission tomography (PET) images. Our objective is the accurate estimation of the scatter distribution, required for an effective scatter correction.Approach.In this paper, we propose a practical energy-based (EB) scatter estimation method that uses the marked difference between the energy distribution of the non-scattered and scattered events in the presence of randoms. In contrast to previous EB methods, we model the unscattered events using data obtained from measured point sources.Main results.We demonstrate feasibility using Monte Carlo simulated as well as experimental data acquired on the long axial field-of-view (FOV) PennPET EXPLORER scanner. Simulations show that the EB scatter estimated sinograms, for all phantoms, are in excellent agreement with the ground truth scatter distribution, known from the simulated data. Using the standard NEMA image quality (IQ) phantom we find that both the EB and single scatter simulation (SSS) provide good contrast recovery values. However, the EB correction gives better lung residuals.Significance.Application of the EB method on measured data showed, that the proposed method can be successfully translated to real-world PET scanners. When applied to a 20 cm diameter ×20 cm long cylindrical phantom the EB and SSS algorithms demonstrated very similar performance. However, on a larger 35 cm × 30 cm long cylinder the EB can better account for increased multiple scattering and out-of-FOV activity, providing more uniform images with 12%-36% reduced background variability. In typical PET ring sizes, the EB estimation can be performed in a matter of a few seconds compared to the several minutes needed for SSS, leading to efficiency advantages over the SSS implementation. as well.


Subject(s)
Positron-Emission Tomography , Tomography, X-Ray Computed , Monte Carlo Method , Phantoms, Imaging , Positron-Emission Tomography/methods , Scattering, Radiation
9.
IEEE Trans Radiat Plasma Med Sci ; 5(5): 694-702, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34746539

ABSTRACT

Development of a PET system capable of in-situ imaging requires a design that can accommodate the proton treatment beam nozzle. Among the several PET instrumentation approaches developed thus far, the dual-panel PET scanner is often used as it is simpler to develop and integrate within the proton therapy gantry. Partial-angle coverage of these systems can however lead to limited-angle artefacts in the reconstructed PET image. We have previously demonstrated via simulations that time-of-flight (TOF) reconstruction reduces the artifacts accompanying limited-angle data, and permits proton range measurement with 1-2 mm accuracy and precision. In this work we show measured results from a small proof-of-concept dual-panel PET system that uses TOF information to reconstruct PET data acquired after proton irradiation. The PET scanner comprises of two detector modules, each comprised of an array of 4×4×30 mm3 lanthanum bromide scintillator. Measurements are performed with an oxygen-rich gel-water, an adipose tissue equivalent material, and in vitro tissue phantoms. For each phantom measurement, 2 Gy dose was deposited using 54 - 100 MeV proton beams. For each phantom, a Monte Carlo simulation generating the expected distribution of PET isotope from the corresponding proton irradiation was also performed. Proton range was calculated by drawing multiple depth-profiles over a central region encompassing the proton dose deposition. For each profile, proton range was calculated using two techniques (a) 50% pick-off from the distal edge of the profile, and (b) comparing the measured and Monte Carlo profile to minimize the absolute sum of differences over the entire profile. A 10 min PET acquisition acquired with minimal delay post proton-irradiation is compared with a 10 min PET scan acquired after a 20 min delay. Measurements show that PET acquisition with minimal delay is necessary to collect 15O signal, and maximize 11C signal collection with a short PET acquisition. In comparison with the 50% pick-off technique, the shift technique is more robust and offers better precision in measuring the proton range for the different phantoms. Range measurements from PET images acquired with minimal delay, and the shift technique demonstrate the ability to achieve <1.5 mm accuracy and precision in estimating proton range.

10.
IEEE Trans Radiat Plasma Med Sci ; 5(5): 598-618, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34553105

ABSTRACT

The first time-of-flight positron emission tomography (TOF-PET) scanners were developed as early as in the 1980s. However, the poor light output and low detection efficiency of TOF-capable detectors available at the time limited any gain in image quality achieved with these TOF-PET scanners over the traditional non-TOF PET scanners. The discovery of LSO and other Lu-based scintillators revived interest in TOF-PET and led to the development of a second generation of scanners with high sensitivity and spatial resolution in the mid-2000s. The introduction of the silicon photomultiplier (SiPM) has recently yielded a third generation of TOF-PET systems with unprecedented imaging performance. Parallel to these instrumentation developments, much progress has been made in the development of image reconstruction algorithms that better utilize the additional information provided by TOF. Overall, the benefits range from a reduction in image variance (SNR increase), through allowing joint estimation of activity and attenuation, to better reconstructing data from limited angle systems. In this work, we review these developments, focusing on three broad areas: 1) timing theory and factors affecting the time resolution of a TOF-PET system; 2) utilization of TOF information for improved image reconstruction; and 3) quantification of the benefits of TOF compared to non-TOF PET. Finally, we offer a brief outlook on the TOF-PET developments anticipated in the short and longer term. Throughout this work, we aim to maintain a clinically driven perspective, treating TOF as one of multiple (and sometimes competitive) factors that can aid in the optimization of PET imaging performance.

12.
Nat Photonics ; 15(12): 873-874, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35599945

ABSTRACT

Measurement of the arrival times of annihilation photons in a detector with greater precision is opening the way to new direct forms of tomographic positon emission imaging that do not require back-projection based reconstruction techniques.

13.
Med Phys ; 48(1): 3-6, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33012033
14.
J Nucl Med ; 62(1): 123-130, 2021 01.
Article in English | MEDLINE | ID: mdl-32482791

ABSTRACT

In this study, we investigated the diagnostic performance of whole-body 18F-FDG imaging using a PET/MRI scanner with time-of-flight capability for low-dose clinical imaging of pediatric patients. In addition to clinically acquired image data using a dosing regimen of 3.7 MBq/kg, images from simulated low-dose regimens (1.9-0.41 MBq/kg) were evaluated using several metrics: SUV quantitation, qualitative image quality, and lesion detectability. Methods: Low-dose images were generated by truncating the list-mode PET data to reduce the count statistics. Changes in PET quantitation for low-dose images were assessed using volume-of-interest analysis of healthy tissue and suspected lesions. Three pediatric radiologists reviewed the image volumes without knowing the dose level. Qualitative image quality was assessed on the basis of Likert scoring. Radiologists were also asked to identify suspected lesions within the liver for PET-only and PET/MR images. Lesion detectability was measured using a receiver-operating-characteristic study and quantified using a free-response receiving-operating-characteristic (FROC) methodology to assess changes in performance for low-dose images. Results: Our analysis of volume-of-interest quantitation showed that SUVs remain stable down to ⅓ dose (1.2 MBq/kg). Likert scoring of PET/MR images showed no noticeable trend with dose level; however, scores of PET-only images were lower for low-dose scans, with a 12% reduction for ⅓-dose images compared with full-dose images. There was minimal change in total lesion count for different dose levels; however, all 3 readers had an increase in false-negatives for ⅓-dose images compared with full-dose images. Using the FROC methodology to quantify lesion-detection performance for human observers, no significant differences were observed for the 3 dosing levels when using the averaged reader data (all P values > 0.103). For all readers, the FROC performance was higher for PET/MRI than for PET alone. Conclusion: Reductions to the lowest recommended pediatric dosing regimens are possible when using PET/MRI. The data suggest that the administered dose can be decreased to 2.46 MBq/kg, a 33% reduction in PET activity, with no degradation in image quality, leading to a corresponding reduction in absorbed dose.


Subject(s)
Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Positron-Emission Tomography , Radiation Dosage , Whole Body Imaging , Child , Female , Humans , Image Processing, Computer-Assisted , Male , Quality Control , Time Factors
15.
Phys Med Biol ; 66(6): 06RM01, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33339012

ABSTRACT

Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.


Subject(s)
Artificial Intelligence , Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Positron Emission Tomography Computed Tomography/trends , Positron-Emission Tomography/methods , Positron-Emission Tomography/trends , History, 20th Century , History, 21st Century , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Kinetics , Medical Oncology/methods , Medical Oncology/trends , Positron Emission Tomography Computed Tomography/history , Prognosis , Radiopharmaceuticals , Systems Biology , Tomography, X-Ray Computed
16.
Phys Med ; 80: 251-258, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33212421

ABSTRACT

This paper provides an update on time-of-flight (TOF) PET with a focus on latest hardware developments leading to current commercial PET/CT instruments. We describe advances in scintillator development, new photosensors and associated electronics readout, and detector designs for utilization in complete systems. Next, we introduce the latest commercial PET/CT scanners based on the aforementioned technologies, and discuss the detector design choices made that are relevant to differences in the system performance. Finally, we end with a discussion of the latest performance benchmarks for improved timing in PET detectors, challenges in scaling this performance to a complete system, and the outlook towards achieving a sub-50 ps coincidence timing resolution (CTR) in a PET detector.


Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Electronics
17.
IEEE Trans Radiat Plasma Med Sci ; 4(3): 283-292, 2020 May.
Article in English | MEDLINE | ID: mdl-33134653

ABSTRACT

PET instruments are now available with a long axial field-of-view (LAFOV) to enable imaging the total-body, or at least head and torso, simultaneously and without bed translation. This has two major benefits, a dramatic increase in system sensitivity and the ability to measure kinetics with wider axial coverage so as to include multiple organs. This manuscript presents a review of the technology leading up to the introduction of these new instruments, and explains the benefits of a LAFOV PET-CT instrument. To date there are two platforms developed for TB-PET, an outcome of the EXPLORER Consortium of the University of California at Davis (UC Davis) and the University of Pennsylvania (Penn). The uEXPLORER at UC Davis has an AFOV of 194 cm and was developed by United Imaging Healthcare. The PennPET EXPLORER was developed at Penn and is based on the digital detector from Philips Healthcare. This multi-ring system is scalable and has been tested with 3 rings but is now being expanded to 6 rings for 140 cm. Initial human studies with both EXPLORER systems have demonstrated the successful implementation and benefits of LAFOV scanners for both clinical and research applications. Examples of such studies are described in this manuscript.

18.
Phys Med Biol ; 65(23): 235028, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33113520

ABSTRACT

We are developing a dedicated, combined breast positron emission tomography (PET)-tomosynthesis scanner. Both the PET and digital breast tomosynthesis (DBT) scanners are integrated in a single gantry to provide spatially co-registered 3D PET-tomosynthesis images. The DBT image will be used to identify the breast boundary and breast density to improve the quantitative accuracy of the PET image. This paper explores PET attenuation correction (AC) strategies that can be performed with the combined breast PET-DBT scanner to obtain more accurate, quantitative high-resolution 3D PET images. The PET detector is comprised of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals. The PET scanner utilizes two detector heads separated by either 9 or 11 cm, with each detector head having a 4 × 2 arrangement of PET detectors. GEANT4 Application for Tomographic Emission simulations were performed using an anthropomorphic breast phantom with heterogeneous attenuation under clinical DBT-compression. FDG-avid lesions, each 5 mm in diameter with 8:1 uptake, were simulated at four locations within the breast. Simulations were performed with a scan time of 2 min. PET AC was performed using the actual breast simulation model as well as DBT reconstructed volumetric images to derive the breast outline. In addition to using the known breast density as defined by the breast model, we also modeled it as uniform patient-independent soft-tissue, and as a uniform patient-specific material derived from breast tissue composition. Measured absolute lesion uptake was used to evaluate the quantitative accuracy of performing AC using the various strategies. This study demonstrates that AC is necessary to obtain a closer estimate of the true lesion uptake and background activity in the breast. The DBT image dataset assists in measuring lesion uptake with low bias by facilitating accurate breast delineation as well as providing accurate information related to the breast tissue composition. While both the uniform soft-tissue and patient-specific material approaches provides a close estimate to the ground truth, <5% bias can be achieved by using a uniform patient-specific material to define the attenuation map.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Mammography/methods , Phantoms, Imaging , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Positron-Emission Tomography/methods
19.
Phys Med Biol ; 65(21): 21RM01, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32434156

ABSTRACT

Since the seventies, positron emission tomography (PET) has become an invaluable medical molecular imaging modality with an unprecedented sensitivity at the picomolar level, especially for cancer diagnosis and the monitoring of its response to therapy. More recently, its combination with x-ray computed tomography (CT) or magnetic resonance (MR) has added high precision anatomic information in fused PET/CT and PET/MR images, thus compensating for the modest intrinsic spatial resolution of PET. Nevertheless, a number of medical challenges call for further improvements in PET sensitivity. These concern in particular new treatment opportunities in the context personalized (also called precision) medicine, such as the need to dynamically track a small number of cells in cancer immunotherapy or stem cells for tissue repair procedures. A better signal-to-noise ratio (SNR) in the image would allow detecting smaller size tumours together with a better staging of the patients, thus increasing the chances of putting cancer in complete remission. Moreover, there is an increasing demand for reducing the radioactive doses injected to the patients without impairing image quality. There are three ways to improve PET scanner sensitivity: improving detector efficiency, increasing geometrical acceptance of the imaging device and pushing the timing performance of the detectors. Currently, some pre-localization of the electron-positron annihilation along a line-of-response (LOR) given by the detection of a pair of annihilation photons is provided by the detection of the time difference between the two photons, also known as the time-of-flight (TOF) difference of the photons, whose accuracy is given by the coincidence time resolution (CTR). A CTR of about 10 picoseconds FWHM will ultimately allow to obtain a direct 3D volume representation of the activity distribution of a positron emitting radiopharmaceutical, at the millimetre level, thus introducing a quantum leap in PET imaging and quantification and fostering more frequent use of 11C radiopharmaceuticals. The present roadmap article toward the advent of 10 ps TOF-PET addresses the status and current/future challenges along the development of TOF-PET with the objective to reach this mythic 10 ps frontier that will open the door to real-time volume imaging virtually without tomographic inversion. The medical impact and prospects to achieve this technological revolution from the detection and image reconstruction point-of-views, together with a few perspectives beyond the TOF-PET application are discussed.


Subject(s)
Positron-Emission Tomography/methods , Electrons , Humans , Image Processing, Computer-Assisted , Neoplasms/diagnostic imaging , Photons , Signal-To-Noise Ratio
20.
J Nucl Med ; 61(11): 1684-1690, 2020 11.
Article in English | MEDLINE | ID: mdl-32198313

ABSTRACT

The latest digital whole-body PET scanners provide a combination of higher sensitivity and improved spatial and timing resolution. We performed a lesion detectability study on two generations of Biograph PET/CT scanners, the mCT Flow and the Vision, to study the impact of improved physical performance on clinical performance. Our hypothesis was that the improved performance of the Vision would result in improved lesion detectability, allowing shorter imaging times or, equivalently, a lower injected dose. Methods: Data were acquired with the Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network torso phantom combined with a 20-cm-diameter cylindrical phantom. Spherical lesions were emulated by acquiring sphere-in-air data and combining them with the phantom data to generate combined datasets with embedded lesions of known contrast. Two sphere sizes and uptakes were used: 9.89-mm-diameter spheres with 6:1 (lung) and 3:1 (cylinder) local activity concentration uptakes and 4.95-mm-diameter spheres with 9.6:1 (lung) and 4.5:1 (cylinder) local activity concentration uptakes. Standard image reconstruction was performed: an ordinary Poisson ordered-subsets expectation maximization algorithm with point-spread function and time-of-flight modeling and postreconstruction smoothing with a 5-mm gaussian filter. The Vision images were also generated without any postreconstruction smoothing. Generalized scan statistics methodology was used to estimate the area under the localized receiver-operating-characteristic curve (ALROC). Results: The higher sensitivity and improved time-of-flight performance of the Vision leads to reduced contrast in the background noise nodule distribution. Measured lesion contrast is also higher on the Vision because of its improved spatial resolution. Hence, the ALROC is noticeably higher for the Vision than for the mCT Flow. Conclusion: Improved overall performance of the Vision provides a factor of 4-6 reduction in imaging time (or injected dose) over the mCT Flow when using the ALROC metric for lesions at least 9.89 mm in diameter. Smaller lesions are barely detected in the mCT Flow, leading to even higher ALROC gains with the Vision. The improved spatial resolution of the Vision also leads to a higher measured contrast that is closer to the real uptake, implying improved quantification. Postreconstruction smoothing, however, reduces this improvement in measured contrast, thereby reducing the ALROC for small, high-uptake lesions.


Subject(s)
Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Humans , Image Processing, Computer-Assisted , Neoplasms/pathology , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...